Pre-Image Preserves Complement

Pre-Image Preserves Complement

For \(f : X \to Y\) and \(B \subseteq Y\)

\[ f^{-1}(B^{c}) = f^{-1}(B)^{c}\]
Proof
\[\begin{align*} &x \in f^{-1}(B^{c}) \\ \iff &f(x) \in B^{c} \\ \iff &f(x) \notin B \\ \iff &x \notin f^{-1}(B) \\ \iff &x \in f^{-1}(B)^{c} \end{align*}\]